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Two dimensional model for coherent synchrotron radiation
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Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate

model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR

analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert

formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial

dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the

singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with

1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more

accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can

be used for understanding the limitation of various 1D models and for benchmarking fully electromag-

netic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

DOI: 10.1103/PhysRevSTAB.16.010701 PACS numbers: 41.60.Ap, 41.20.Jb

I. INTRODUCTION

Coherent synchrotron radiation is a collective radiation
effect in accelerators when high current beam bunches
move along a circular beam path, e.g., in a storage ring
or in a bunch compressor of a free electron laser (FEL). It is
well known that the synchrotron radiation of a single
charge particle contains very high harmonics of the rota-
tion frequency. For the radiation wavelength near or longer
than the bunched beam size, particles in the beam radiate
coherently; therefore the radiation fields are enhanced by
the number of coherently emitting particles. These fields
can feed back to the beam dynamics, causing emittance
growth or microbunching instabilities. Such detrimental
effects can degrade the performance of a storage ring or
a FEL.

To understand the CSR effects on the beam requires
accurate and self-consistent dynamical simulations ac-
counting for the realistic beam shape and parameters,
transient dynamics, and possibly a material boundary for
CSR suppression. Previous development efforts have led to
several multidimensional self-consistent tools for the simu-
lation of CSR effects in realistic devices. For example, Li
[1] has developed a Hamiltonian formulation in the internal
coordinates of the beam. While in Bassi et al. [2],
Gillingham et al. [3], and Novokhatski [4], particle-mesh
based methods are used and each adopts a different ap-
proach for the solution of the fields: the retarded Green
function, the paraxial wave approximation, and an implicit
finite-difference solver are employed, respectively.
However, it is difficult and time consuming to calculate

or simulate CSR self-consistently from first principles
therefore idealized theoretical CSR model are often em-
ployed in beam tracking codes. Most of the CSR models
developed so far use a 1D line charge model [5–8], in
which both the beam charge distribution and the field
positions are confined to the arc of the circular motion. A
single particle wakefield is calculated along the arc using
the Liénard-Wiechert formula either for the radiation field
only or for a renormalized field which also includes an
additional nonsingular Coulomb field component [5,6].
The single particle wakefield is then convolved with the
smooth 1D line charge density of the beam to obtain the
beam wakefield. For highly relativistic beams, the energy
dependence of the wakefield is often ignored. Recently, a
study of the noise property of the beam on the CSR wake-
field suggests that the beam energy has an important role
for the level of noise in the CSR field of a realistic beam
[9], therefore it is desirable to have accurate energy de-
pendence of the wake. Furthermore, the radiation field
exhibit complex distribution in multidimensional space
as shown in Sec. IV. While at low beam energy, the space
charge force can also affect beam dynamics. In this paper,
we extend the well-known 1D CSR analytic model into two
dimensions and develop a simple numerical algorithm
based on the Liénard-Wiechert formula for the radiation
or the total field. This CSR numerical model includes the
2D spatial dependence of the charge and field distributions
in the bending plane and can be used for arbitrary beam
energy. It also removes the singularity in space charge field
calculation and the controversial renormalization process
in some of the 1D models. Good agreement is obtained
with 1D CSR analytic results for FEL related beam pa-
rameters but more accurate results are also found for
low-energy or large spot size beams and off-axis fields.
This 2D model can be used to understand the limitation of
various 1D models and can be employed to benchmark
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multidimensional fully electromagnetic particle-in-cell
(PIC) simulations for self-consistent CSR modeling.

II. 2D CSR MODEL

In our 2D CSR model, we assume the beam has a
distribution in the plane of the reference circular trajectory
with a radius R and an origin O. We will calculate the free
space wakefield of a particle located at its present position
P for an observation point A in the same plane. Figure 1
shows the geometric diagram of the 2D model. Note that,
similar to the 1D CSR models, even though we confine
source and field points to lower dimensionality in space,
the single particle wakefield, i.e., the Green’s function, is
actually a 3D result evaluated only in the bending plane.
The 3D single particle wakefield is discussed in more detail
in Ref. [10]; here the 2D model offers a simpler physical
picture than a 3D one while still being a practical method
for accurate CSR calculation.

Assuming the emitting particle with charge e moves

along the circular trajectory with a constant speed � ¼
j ~�j ¼ j ~�0j, one can calculate the retarded position P0 from
which the fields at observation point A and present time t
are originated. From the Liénard-Wiechert formula, the
electric field at A is

~E ¼ eðn̂� ~�0Þ
�2�2ð1� n̂ � ~�0Þ3 þ

en̂� ½ðn̂� ~�0Þ � _~�
0�

c�ð1� n̂ � ~�0Þ3 ; (1)

where � ¼ ð1� �2Þ�1=2 and � ¼ P0A. The first term in

Eq. (1) is commonly referred to as the velocity field ~Evel

and the second term as the radiation field ~Erad.

The electric field has both transverse and longitudinal
components with respect to the velocity of another particle
at the observation point A. Here we only investigate the
longitudinal field. In general, the longitudinal projection of
the single particle wakefield not only depends on the
bending radius R and the origin O of the emitting particle
but also those of the particle at A. However, for beam size
involved in storage rings and FELs which is typically much
smaller than the bending radius R, one can ignore these
differences and assume that all beam particles move
around the same origin with the same angular frequency.
Thus, the longitudinal direction is defined here as the
tangential direction at point A. The longitudinal single
particle wakefield weakly depends on R for such small
beam sizes. To further simplify the summation of the
longitudinal electric field at A from all beam particles, it
is assumed that the particle energy is constant and the
external magnetic field is uniform. Therefore the wakefield
does not depend on the angular position of P and only
depends on the relative angular and radial distance between
the emitting particle and the observation point. Under these
assumptions, the linear superposition of the fields at the
observation point can be replaced by a convolution over the
beam density profile.
It can be shown that the longitudinal radiation field

Erad
s ¼ ~Erad � ŝ is not singular even though � ¼ 0 when

� ¼ � ¼ 0. Evel
s ¼ ~Evel � ŝ is indeed singular when � ¼

0. However, unlike the 1D model, this singularity in single
particle velocity field does not lead to a diverging result for
a smooth beam profile in 2D as we will discuss in Sec. IV
and the Appendix. Therefore, it will be included in the
calculation in Sec. IV.

III. RETARDED ANGLE

For a point particle with charge e moving along a
predefined circular trajectory of radius R at a constant

speed j ~�0j ¼ j ~�j ¼ � as shown in Fig. 1, we can define
the angle between the particle’s present position P and the
observation point A as ffPOA ¼ �, the retarded angle
between P and the retarded position P0 as ffPOP0 ¼ c

and the angleffOP0A ¼ �. In Eq. (1), n̂, ~�0
, � all depends

on c and the field is known to have large spatial variations
in some regions; therefore it is important to find an accu-
rate solution for c first. In this section, we will use the
geometrical relationship illustrated in Fig. 1 to obtain c as
a function of � and �. It is generally not possible to obtain
an exact answer; therefore various approximate solutions
and their accuracy will be discussed in this section.

A. General properties of the retarded angle

Note that P0P
_ ¼ Rc ¼ c�ðt� t0Þ,P0A ¼ � ¼ cðt� t0Þ

and BA ¼ �, therefore c =� ¼ �=R and OA ¼
OBþ BA ¼ Rþ �. From causality, c � 0; we will
show later that c ¼ 0 only when � ¼ � ¼ 0.

FIG. 1. Diagram of the 2D CSR model. P is the particle’s
current position on the circular trajectory at time t, P0 is its
position at the retarded time t0 where the fields at the observation
point A is originated from. c is the angular separation between P
and P0. The coordinate of A is denoted by its angular separation
from P and its radial distance from the trajectory, i.e., Að�;�Þ. �
is the angle formed between P0A and P0O. The positive direction
of the angles are also shown. n̂ and ŝ are unit vectors pointing
from P0 to A and perpendicular to OA, respectively.
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For �AOP0, we have

R2 þ ðRþ �Þ2 � 2RðRþ �Þ cosð�þ c Þ ¼ �2;

R2 þ �2 � 2R� cos� ¼ ðRþ �Þ2;
which can also be rewritten as

1þ ð1þ xÞ2 � 2ð1þ xÞ cosð�þ c Þ ¼ c 2=�2; (2)

1þ c 2=�2 � 2ðc =�Þ cos� ¼ ð1þ xÞ2; (3)

in which we have adopted the normalized variable
x ¼ �=R.

Equation (2) is valid for both � � 0 and �< 0, and
from this equation one can solve c as a function of �, x,
and �; however, this is a transcendental equation which
generally requires numerical solution. For theoretical
analysis, it is also desirable to obtain a simple approximate
solution to Eq. (2) with sufficient accuracy for the parame-
ters of interest. After c is solved, one can easily obtain �
from Eq. (3). Both c and � are functions of ð�; x; �Þ or
ð�; x; �Þ. Although � weakly depends on � for high beam
energy, the dependence of c on � is not necessarily weak
for small � or x as we will discuss below. A plot of c ð�Þ
for various values of x and � is shown in Fig. 2 for large �
and in Fig. 3 for small �. It is worth noting that c ð�; x; �Þ
is periodic in� due to rotation symmetry and it is bounded,
i.e., jxj � ðc =�Þ � ð2þ xÞ from Eq. (2), therefore only
the motion of the charge particle during a finite history
window will affect the field at a given radius. This result
has two practical meanings: (1) a tracking code using the
Liénard-Wiechert approach to calculate CSR does not need
to store the full trajectory of the particle; (2) once the
particle enters the circular trajectory for a sufficient time,
the field will reach steady state. For synchrotron radiation
calculation at far field, the dependences of c on both� and
x need to be taken into account as both these arguments are
large. While for most of the problems of interest concern-
ing CSR effects on beams, which is the scope of this paper,

j�j; jxj � 1. In such a case an approximate solution is
possible and convenient as discussed by many authors
[5,6,11,12].
From Fig. 3, it can be seen that c is small when � & 0;

therefore the field there is emitted from a retarded position
close by. When � * 0, c quickly increases as � increases,
the fields at such an observation point are emitted from a
far-away retarded position; the largest value of c occurs
when both x and � are the largest. A large retarded angle
imposes a limit on the phase error of the electromagnetic
field in the field solver in a simulation code. For example,
to get the electromagnetic field propagation correctly to
the observation point at x ¼ � ¼ 10�4 where c 	 0:14
from Fig. 3, the required phase error per wavelength is
�max�=½2R sinðc =2Þ� 	 �max�=ðRc Þ 	 0:0071
, assum-
ing a wavelength of �=R ¼ 2� 10�4 and a maximum
accumulated phase error of �max ¼ 5
. Note that at 40
cells per wavelength, the 2nd order Yee finite-difference
time-domain algorithm commonly used in an electromag-
netic PIC code has a phase error of about 0.2
 per wave-
length; therefore a low dispersion error scheme is
necessary for CSR simulation using PIC codes.

B. Approximation for the retarded angle

Awidely used approximation of c in 1D models can be
obtained from Taylor expansion of the cosine term in
Eq. (2) for x ¼ 0 and � ¼ 1:

c 	
� ð24�Þ1=3 � � 0
��=2 �< 0:

(4)

In the above approximation, the first result was obtained
by Taylor expansion to the 4th order term and noticing
c � � for � � 0, hence cosð�þc Þ	1�ð�þc Þ2=2þ
ð�þc Þ4=24	1�ð2�cþc 2Þ=2þc 4=24. Substituting

this into Eq. (2), one finds c ¼ ð24�Þ1=3. While for the
second result, a Taylor expansion to the second order,
cosð�þ c Þ 	 1� ð�þ c Þ2=2, is sufficient. The com-
parison of the approximation in Eq. (4) with the exact
result is shown in Fig. 4. As expected, Eq. (4) is accurate

FIG. 2. (left) Retarded angle c as a function of � when � ¼ 1,
for x ¼ �0:2; 0; 0:2; 1; 2 (red, green, blue, orange, black curves,
respectively). (right) Retarded angle c as a function of � when
x ¼ 0, for � ¼ 2; 10; 100; 1000 (red, green, blue, orange curves,
respectively; orange curve is on top of the blue one).

FIG. 3. (left) Retarded angle c as a function of � when � ¼ 1
and � � 1, for x ¼ �10�4; 0; 10�4 (red, green, blue curves,
respectively). (right) Retarded angle c as a function of � when
x ¼ 0 and � � 1, for � ¼ 2; 10; 100; 1000 (red, green, blue,
orange curves, respectively).
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for large value of � for x ¼ 0, but gradually loses accuracy
for farther off-axis locations.

However, as shown in Fig. 3, the � dependence of c can
lead to large error in Eq. (4) at low energy (or small value
of � as we will discussed below). References [5,6] use a
similar Taylor expansion retaining the energy dependence
in Eq. (2). Using u ¼ �þ c , Eq. (4) in Ref. [6] can be
rewritten as

ð�þ c Þ3=24þ ð�þ c Þð1� �Þ � � ¼ 0; (5)

Similarly, Eq. (3.4) in Ref. [5] is

ð�þ c Þ3=24þ ð�þ c Þ=ð2�2Þ � � ¼ 0: (6)

Both Eqs. (5) and (6) are only valid for �> 0. The exact
solution of Eq. (6) is

c ¼ 2ð�1=3 ���1=3Þ=�� �; (7)

where

� ¼ 3�3�=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�3�=2Þ2 þ 1

q
: (8)

In a 2D model, we need to include the x dependence in
the approximate solution of Eq. (2). Here we use the Padé
approximant, where the transcendental function cosð	Þ is
approximated by Plð	Þ=Qmð	Þ and Pl, Qm are polynomial
functions of order l and m, respectively. Using cosð	Þ 	
P2ð	Þ=Q2ð	Þ ¼ ð1� 5	2=12Þ=ð1þ 	2=12Þ and retaining
the dependence in x and �, Eq. (2) can be written as

ðx2 þ �2 þ x�2 þ x2�2=12Þ þ ð2�þ 2x�þ x2�=6Þc
þ ð1þ xþ x2=12� 1=�2 � �2=12�2Þc 2

� �c 3=6�2 � c 4=12�2 	 0: (9)

Note that for the beam parameters we are mostly inter-
ested in, jxj � 1, j�j � 1, 1=�2 � 1 ¼ ��2��2 � 1,
and j2�c j � j�c 3=6�2j, i.e., 12�2 � c 2. Taking x
and� to be about the same order of magnitude and keeping

the leading terms in the coefficients in Eq. (9), then drop-
ping the c 3 term on the left-hand side (LHS) results in

x2 þ �2 þ 2�c þ ðx� ��2��2Þc 2 � c 4

12�2
¼ 0: (10)

It can be verified that Eq. (10) is consistent with the
result in Eq. (4) when x ¼ 0 and � ¼ 1. In order to check
the accuracy of Eq. (10) for off-axis location and finite
beam energy, we rely on a numerical solver to find the real
and positive root of Eq. (2). Figure 5 shows that the
approximate solution using the Padé approximant agrees
well with the solution of Eq. (2) for jxj and j�j as large as
0.002 and ��1 as large as 0.001.

C. Solution for the retarded angle

Equation (10) has exact analytic solutions but in very
complicated form. In order to understand the properties of
c in the 2D model, we can distinguish several situations,
i.e., for small, intermediate, and large value of c .
Case (1).—A small value of c , this corresponds to the

blue (left) region in Fig. 5. In this case, the c 4 term in
Eq. (10) can be dropped as in the 1D model, leading to a

FIG. 5. Top: Retarded angle c pade calculated from Eq. (10) in
the region �2� 10�3 � �, x � 2� 10�3 for R ¼ 100 cm,
� ¼ 1000. Bottom: The magnitude of the relative error
log10jðc 0 � c padeÞ=c 0j for the same range of � and x. The

inset shows the narrow region where the relative error is largest;
the maximum relative error is about 22%.

FIG. 4. Retarded angle for small �. Red curve is for x ¼ 0,
� ¼ 1; green curve is for x ¼ 0, � ¼ 1000; blue curve is for
x ¼ 10�5, � ¼ 1000; black cross is the approximated result
from Eq. (4).
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quadratic equation that can be easily solved with the
positive real root being

c 1 ¼
8<
:
� x2þ�2

2� x ¼ ��2��2;

���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�ðx2þ�2Þðx���2��2Þ

p
ðx���2��2Þ x � ��2��2;

(11)

where the second root of the quadratic equation when x �
��2��2 is dropped due to accuracy consideration dis-
cussed below. It can be shown that c 1ð�< 0; x ¼ 0Þ 	
��=2, thus verifying the second result in Eq. (4).

Case (2).—A large value of c , this corresponds to the
red (right) region in Fig. 5. In this case, the (x2 þ �2) term
in Eq. (10) can be dropped, leading to a cubic equation,

2�þ ðx� ��2��2Þc � c 3

12�2
¼ 0:

When x ¼ 0, we essentially recover Eq. (6). While for

x ¼ ��2��2, the solution is c 2 ¼ ð24��2Þ1=3, which is
consistent with the first result in Eq. (4) albeit with a shift
in x. For x � ��2��2, the real root of the cubic equation is

c 2 ¼ 4��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx� ��2��2j

q
; (12)

where

� ¼

8>>>>>><
>>>>>>:

sinh
�
1
3 sinh

�1C
�

x < ��2��2

signðCÞ cosh
�
1
3 cosh

�1jCj
�

x > ��2��2; jCj � 1

cos
�
1
3 cos

�1C
�

x > ��2��2; jCj< 1

and C ¼ 1:5���1jx� ��2��2j�3=2.
The above result generally depends on the energy of the

particle. However, for jCj � 1, using the Taylor expansion
about infinity, sinh�1ð	Þ ¼ lnð	Þ þ ln2þ 	�2=4þ � � � ,
and sinhð	Þ 	 e	=2, the first result can be approximated

as � 	 ðC=4Þ1=3, hence c 2 	 ð24��2Þ1=3 which weakly
depends on � and does not depend on x. To compare with
the result from a 1D model, i.e., x ¼ 0, we have C ¼
1:5��3�2, c 2 ¼ 4��1 sinh½13 sinh�1ð1:5��3�2Þ�; when

��3 � 1, c 2 	 ð24��2Þ1=3 which is again the familiar
result in 1D model in Eq. (4). Therefore, we can conclude
that the approximate solution of c in Eq. (4) for �> 0 is
accurate when jCj � 1.

Case (3).—An intermediate value of c , this corresponds
to the middle region in Fig. 5. In this case, one needs to
solve the 4th order Eq. (10). However, it is only necessary
for a small region in the parameter space; therefore, for
convenience we may connect the result in case (1) and case
(2) by dropping both c and c 2 terms,

c 3 ¼ 12�1=2ðx2 þ �2Þ1=4; (13)

which is generally a sufficiently good approximation.
Although we have identified three cases that the quartic

equation (10) can be further simplified to cubic, quadratic,

or even linear equations, the parameter ranges over which
we can use these results also need to be discussed. In
addition to the requirement that c is a real positive root
of these equations, the relative error with respect to the true
root c 0 of Eq. (10) needs to be small. The relative error
can be estimated by the Taylor expansion of the LHS of
Eq. (10) gðc Þ � x2 þ �2 þ 2�c þ ðx� ��2��2Þc 2 �
c 4=ð12�2Þ. For example, expanding gðc 0Þ around the
root c 1 of the quadratic equation,

gðc 0Þ ¼ 0 	 gðc 1Þ þ g0ðc 1Þðc 0 � c 1Þ;
where g0ðc Þ¼dgðc Þ=dc ¼2�þ2ðx���2��2Þc�c 3=
ð4�2Þ, one obtains the relative error 
�jðc 0�c 1Þ=c 1j,


 ¼
�������� gðc 1Þ
c 1g

0ðc 1Þ
��������

¼
�������� c 3

1

12�2½2�þ 2ðx� ��2��2Þc 1 � 4c 3
1�
��������:

Substituting the solution c 1, and enforcing the require-
ment 
 � 1 and c 1 to be a real positive number, it is found
that c 1 is a good approximation when �< 0 and �2 �
3
2 ðx� ��2��2Þ2 � x2. A similar procedure can be used to

determine the error of the approximated result in the other
cases without numerically solving Eq. (10).

IV. LONGITUDINAL SINGLE
PARTICLE WAKEFIELD

With c and � solved using the numerical or approxi-
mate methods described in Sec. III, Eq. (1) can be used to
calculate the free space wakefield of a single particle in
circular motion. The following identities are useful in the
expression of the electric field:

n̂ � ~�0 ¼ � cosð�=2� �Þ ¼ � sin�;

n̂ � _~�
0 ¼ �2c

R
cos�;

n̂ � ŝ ¼ cosð�þ �þ c � �=2Þ ¼ sinð�þ �þ c Þ;
~�0 � ŝ ¼ � cosð�þ c Þ; _~�

0 � ŝ ¼ �2c

R
sinð�þ c Þ:

For the radiation field, the tangential component

Erad
s ¼ ~Erad � ŝ is

Erad
s ¼ e½ðn̂ � _~�

0Þðn̂ � ŝ� ~�0 � ŝÞ � ðŝ � _~�
0Þð1� n̂ � ~�0Þ�

c�ð1� n̂ � ~�0Þ3 ;

while for the velocity field

Evel
s ¼ eðn̂ � ŝ� ~�0 � ŝÞ

�2�2ð1� n̂ � ~�0Þ3 :
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Using the identities above and � ¼ cR=�, we obtain

Erad
s ¼ e�3ðsin�� �Þ cosð�þ �þ c Þ

R2c ð1� � sin�Þ3 ; (14)

and

Evel
s ¼ e�2½sinð�þ �þ c Þ � � cosð�þ c Þ�

�2R2c 2ð1� � sin�Þ3 : (15)

It is also useful to obtainEs through the scalar and vector
potentials,

Es ¼ ~E � ŝ ¼ � @�

@s
� @As

c@t
¼ � @ð�� �AsÞ

@

; (16)

where �, As ¼ ~A � ŝ are the scalar potential and the lon-
gitudinal component of the vector potential in the Lorentz

gauge, respectively, and 
 ¼ s� c�t ¼ �R. �, ~A are also
given by the Liénard-Wiechert formula, therefore

ð�� �AsÞ ¼ eð1� � ~�0 � ŝÞ
�ð1� n̂ � ~�0Þ ¼ e�½1� �2 cosð�þ c Þ�

Rc ð1� � sin�Þ :

(17)

A. On-axis single particle wakefield

When the observation position A is on the same trajec-
tory of the charge, i.e., x ¼ 0, the above expressions are

much simplified by noticing that sin2ð�þc
2 Þ ¼ c 2=4�2 and

c cos� ¼ c 2=2� from Eqs. (2) and (3). Consider c ¼ 0;
it is obvious that� ¼ c ¼ 0, also� is not relevant and can

be set to 0 too. If �> 0, sinð�þc
2 Þ ¼ cos� ¼ c =2�, while

for �< 0, since � ¼ j2 sinð�þc
2 Þ=c j � 1, sinð�þc

2 Þ ¼
� cos� ¼ �c =2�. Therefore, one can write

�þ c þ 2� ¼
8><
>:
� �> 0

0 � ¼ 0

�� �< 0;

(18)

and

Erad
s ðx ¼ 0Þ ¼

8>>>>>>>>><
>>>>>>>>>:

e�2ð��sin�Þ
2R2ð1�� sin�Þ3 � � 0

� e�2

2R2ð1��Þ2 � ! 0þ

e�2

2R2ð1þ�Þ2 � ! 0�

e�2

4R2

h
1

ð1þ�Þ2 � 1
ð1��Þ2

i
� ¼ 0:

(19)

Note that Erad
s ðx ¼ 0Þ is not singular for any � but

it is discontinuous at �¼0. For ��1, Erad
s ð�!0þ;

x¼0Þ	�2e�2�4=R2 while Erad
s ð�!0�;x¼0Þ	

e=ð8R2Þ, Erad
s ð� ! 0þ; x ¼ 0Þ=Erad

s ð� ! 0�; x ¼ 0Þ ¼
�ð1þ �Þ2=ð1� �Þ2 	 �16�4. The value of Erad

s at
this point is conveniently defined as the average of
Erad
s ð� ! 0þ; x ¼ 0Þ and Erad

s ð� ! 0�; x ¼ 0Þ. Although
not rigorous, this definition is consistent with the

instantaneous power loss of the emitting electron from
the Larmor formula in the point charge model [5]. Using
the solution of Eq. (6), Erad

s ðx ¼ 0Þ can be completely
determined. Erad

s ðx ¼ 0Þ is well known in the 1D models
for its angular-energy scaling parameter ��3 which can be
seen from Eq. (8). Erad

s ðx ¼ 0Þ is plotted in Fig. 6, which
consists of a negligible part for �< 0, a pronounced
negative peak for 0<��3 & 1, and a far field that drops

off slowly as ��4=3 for ��3 � 1. It is the far field that
leads to the characteristic parabolic cylinder function shape
of the CSR field for a smooth Gaussian beam. However, the
spiky feature in Erad

s ðx ¼ 0Þ can also play an important role
if the beam current has modulation with scale length on the
order of ��3R which is in resonance with the negative
peak. Because the synchrotron radiation cone has a finite
angular extent, it is not surprising that the negative peak
also has an extent in the radial direction in a 2D model as
discussed below.
Similarly, we can obtain the expression of (�� �As)

for x ¼ 0 from Eq. (17). For small � and � ¼ 1,
(�� �As) can be approximated using Eq. (4). After
some algebra, it can be written as

ð�� AsÞ=ðe=RÞ 	
�
2=ð3�Þ1=3 � � 0

��=8 �< 0:
(20)

As discussed in Sec. III, the first result in the above
approximation is valid for � � ��3.

B. Off-axis single particle wakefield

For the off-axis locations, one can show that Erad
s ðx � 0Þ

is not singular either; this is because ð1� � sin�Þ> 0 and
c ðx � 0Þ> 0. The latter inequality is valid because c ¼
0 implies that x ¼ 0 in Eq. (3). Erad

s from Eq. (14), which is
shown in Fig. 7, exhibits a complicated pattern in two
dimensional ð�; xÞ space. Similar to the 1D result, for a
high energy particle, Erad

s only depends on � through the
quantity ��3, while the x dependence is through the quan-
tity x�2. This can be understood by noting that Eq. (10) can
be rewritten, by ignoring the second term �2 and setting

FIG. 6. On-axis radiation wakefield Erad
s ðx ¼ 0Þ for a single

particle.
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�2 ¼ 1 while keeping the � dependence, as a universal

equation for ~c ð~x; ~�Þ,
~x 2 þ 2~� ~c þð~x� 1Þ ~c 2 � ~c 4=12 ¼ 0; (21)

where ~x � x�2, ~� � ��3, and ~c � c�. Dropping the �2

term is justified for most of the region in ð�; xÞ space
except for the vicinity of the negative � axis, where �2

may be comparable to or larger than x2 and 2�c . Since
synchrotron radiation at the backward direction of the
motion of a relativistic particle is weak, it is expected
that the fields at this region are not important. Therefore
the universal equation can be solved numerically once for
~c and apply to a large range of beam parameters. It is
worth discussing the amplitude scaling of (�� �As) and
Es with �. From Eq. (17), (�� �As) is proportional to
ð1� ��2=2Þc�1ð1� � sin�Þ�1½1� �2 cosð�þ c Þ� for
its energy dependency. Since

c�1 ¼ � ~c�1; �� cos� 	 ~c =2� ~x= ~c ;

ð1� � sin�Þ�1 	 �2ð1þ � sin�Þ=½1þ ð ~c =2� ~x= ~c Þ2�;

1� �2 cosð�þ c Þ ¼ ��2

�
1� �2~x2��2 � ~c 2

2ð1þ ~x��2Þ
�
	 ��2;

it is obvious that ð�� �AsÞ 
 � to the lowest order, there-
fore Es ¼ �@ð�� �AsÞ=@

 �3@ð�� �AsÞ=@~�
 �4,

as long as (1þ � sin�) weakly depends on �. The
latter condition can be shown to be true for most of
the region in the ð~�; ~xÞ plane except for the vicinity of
the negative ~� axis.

~Erad
s � Erad

s =ðe�4=R2Þ is plotted as a function of ~� and ~x
in Fig. 7. It is interesting that, in addition to the slowly
dropping off far field for ~� � 1 similar to the result from
1D model, a pronounced feature appears in Fig. 7—a long
trough extending from (~� ¼ 0, ~x ¼ 0) to the corner of the
figure. This trough corresponds to large negative values of
Erad
s and has a combination of the characteristics of the far

field and the near field, i.e., its width in � is narrow but the
length in x is long. Furthermore, a cloverleaf pattern ap-
pears immediately surrounding the emitting particle,
which is also shown in Fig. 7.
Next we discuss the long trough structure in Fig. 7. This

negative spike is due to the ð1� � sin�Þ3 factor in the
denominator of Erad

s when sin� ¼ 1, while the field drops
to 0 if sin� ¼ �. Therefore it is most interesting to inves-
tigate the behavior of Erad

s between � � sin� � 1 or
���1 � cos� � ��1. Noticing that Erad

s =ðe�3=R2Þ ¼
f1 � f2, where f1 ¼ ðsin�� �Þ=ð1� � sin�Þ3 and f2 ¼
cosð�þ c þ�Þ=c 	�½2xþx2þðc =�Þ2�=½2ðc 2=�Þ�¼
�ð�2=�2þ1Þ=2�. Here we only consider the region

x � 0 and define �2 ¼ 2xþ x2, � ¼ c =� ¼ �þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
, and � ¼ cos�. Both f1 and f2 are only func-

tions of � for fixed x and �. It can be easily shown that
f1ð�Þ has a narrow spike as f1ð���1Þ ¼ f1ð��1Þ ¼ 0 and
f1ð0Þ 	 4�4. On the contrary, f2ð�Þ varies slowly when

~x � 1 or �2�2 � 1, as df2=d� > 0 and ½f2ð��1Þ �
f2ð���1Þ�=f2ð0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�2

p
=ð�2�2Þ 	 0. Hence, the

position of the spike for x � 0 can be approximated by
setting � ¼ �=2 in Eqs. (2) and (3). The result (shown in
Fig. 8) is

� ¼ cos�1½1=ð1þ xÞ� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ x2

p
: (22)

The above expression indicates that � � �=2 when
x < 0, as can be seen from Fig. 1. Therefore the spike

FIG. 8. Position of the negative spike in Es for x > 0 and � ¼
10; 20; 100; 1000 (red, green, blue, orange curves, respectively)
from Eq. (22). It is worth noting that the accuracy of the position
is Oð��3Þ; therefore the curves for � ¼ 10; 20 are estimates of
the peak position for the range shown.

FIG. 7. Top: The longitudinal radiation wakefield ~Erad
s ð~�; ~xÞ ¼

Erad
s =ðe�4=R2Þ of a single particle with � ¼ 100. This figure is

rotated for better visualization of the features in the wakefield.
Bottom: The contour plot showing the cloverleaf pattern in the
central part of ~Erad

s ð~�; ~xÞ.

TWO DIMENSIONAL MODEL FOR COHERENT . . . Phys. Rev. ST Accel. Beams 16, 010701 (2013)

010701-7



www.manaraa.com

gradually disappears on the inner side of the particle’s
trajectory and Erad

s becomes smooth.
To find the peak longitudinal electric field at the location

specified by Eq. (22), one can use

c ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþx2

p
cosð�þc þ�Þ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1þxÞ�2

q
which is valid when x > 0 (or x <�2 but this condition
will never be fulfilled because x � �1). Therefore, the
peak longitudinal radiation field at the trough is

Erad
s 	 � e�2

R2ð1þ xÞð1� �Þ2 	 � 4e�2�4

R2ð1þ xÞ :

Note that when x ! 0, this peak field approaches a value
that is twice larger than Erad

s ð� ! 0þ; x ¼ 0Þ in Eq. (19)
indicating the discontinuous property of the single particle
radiation wakefield at the origin. Since x � 1 for typical
beam size, this peak field amplitude is almost constant
across the beam, thus providing a strong radial coupling
between particles over a long distance which is not present
in the 1D models.

The angular width of the spike can be estimated by the
node of Erad

s , which corresponds to � ¼ ���1. Hence,
�� 	 ��3 from Eqs. (2) and (3). This result is consistent
with the width of the spiky feature in the 1D models. The
radiation field from a single particle has a strong Fourier
component at frequency 
�3�c, where �c ¼ c=R is the
angular frequency of the circular motion, confirming that
the trough is produced by the radiation inside the synchro-
tron radiation cone.

V. LONGITUDINAL CSR FIELD OFA BEAM

In Eqs. (14) and (15), both Erad
s and Evel

s depend on
bending radius R explicitly through the factor R�2 and
implicitly through c and �. Here we only consider the
explicit dependence which demands �x=R � 1 such that
to the lowest order Erad

s and Evel
s is independent of R, where

�x is the transverse spot size of the 2D Gaussian beam.
Under this condition, we can calculate the longitudinal
electric field for a beam with arbitrary shape through a
convolution,

Ei
sð
;xÞ¼

ZZ þ1

�1
Ei
sð
�
0;x�x0Þ�ð
0;x0Þd
0dx0; (23)

where i denotes either rad or vel.

A. Steady-state CSR calculation

Because of the strong spiking of Erad
s (Evel

s ), if the con-
volution is done numerically over the bunch shape, an
angular resolution of at least��
1=�3 (higher) is needed.
For � on the order of 103 or more, one has to resort to
integration by parts or other techniques. Assuming the
emitting particle has been in uniform circular motion with
constant radius under the magnetic field forever,
(���As) is only a function of 
 and x. It is straightforward

to show that the tangential electric field of a beam (includ-
ing both velocity and radiation fields) is

Esð
; xÞ ¼ �
ZZ þ1

�1
ð�� �AsÞ

@


��������
�
0;x�x0

� �ð
0; x0Þd
0dx0 (24)

¼ �
ZZ þ1

�1
ð�� �AsÞj
�
0;x�x0

� �ð
0; x0Þ
@
0 d
0dx0: (25)

Equation (25) includes both the velocity field and radia-
tion field, and it is dominated by the radiation field Erad

s at
high beam energy. However, at low beam energy we expect
the opposite. As the well-known parabolic cylinder func-
tion result in the 1D model relies on the single particle far-
field result for x ¼ 0 and� ¼ 1, we expect deviations from
this result will occur for the field off the central trajectory
in the 2D model with low energy and large spot sizes.
Although one would think that the velocity field will lead
to a diverging result as soon as a finite energy beam is used,
which is the rationale of the so-called ‘‘renormalization’’
procedure [6], it turns out the result is converging as �
 is
decreased. This shows that the velocity field for a beam in a
2D model is actually finite. In the Appendix, the conver-
gence is proved for the space charge (velocity) field of a
Gaussian beam in a uniform straight-line motion, which
gives insight on the difference of the convergence proper-
ties in 1D and 2D models. However, to prove the conver-
gence for the case of circular motion is difficult and in
practice we need to monitor the convergence of result.
Figure 9 compares Erad

s from Eq. (23) and Es calculated
from Eq. (25) for a 2D Gaussian beam with �x ¼ �s ¼
200 �m, R ¼ 100 cm, and � ¼ 10; 100. Note that the
convolution in Eqs. (23) and (25) can be done using electric
field or potential kernel defined in the scaled spatial vari-
ables ~�, ~x. Similarly, one can define the scaled beam size
~�s ¼ �s�

3=R and ~�x ¼ �x�
2=R to be used in Eqs. (23)

and (25). With this change of variables, it is easy to under-
stand the qualitative behavior of the longitudinal CSR
field. For example, Fig. 9 shows that Erad

s resembles the
cloverleaf pattern in the central part of the single particle
wakefield, which is a consequence of the scaled beam size
~�s and ~�x being smaller or close to the size of the single
particle cloverleaf pattern in Fig. 7. Figure 9 also shows
that Es is dominated by the velocity field at � ¼ 10; while
for � ¼ 100, both Es and Erad

s approach the parabolic
cylinder solution of the far-field response in the 1D model
since the velocity field scales as ��2 and ~�s is much larger
than ~�x at this energy, making the scaled beam shape more
1D-like. Figure 10 shows that the agreement of the on-axis
longitudinal field with the parabolic cylinder solution im-
proves quickly for higher beam energy. However, deviation
from this solution is still observed in Fig. 10 across the x
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dimension which is a result of the asymmetry in the single
particle wakefield in Fig. 7. For beams with large aspect
radio �x=�s, this variation along the x direction is more
pronounced.

B. Transient CSR calculation

The method to calculate the steady-state field can be
used for the transient CSR field as long as the longitudinal
beam size is sufficiently small. The single particle wake-
field Ei

s in Eq. (23) and potential (�� �As) in Eq. (25)
will be replaced by the corresponding transient wakefield

and potential. The simplest case when a beam enters a
uniform magnetic field is considered here as a demonstra-
tion, which is also of practical interest for benchmarking
self-consistent simulation. Before the beam enters the
magnetic field region, it moves along a straight path with
constant velocity. For a single particle, this means that the
field and potential is determined by Eqs. (14) and (17)
when c ð�; xÞ � c 0 ¼ s=R, where s is the distance the
particle travels into the bend. While for c ð�; xÞ> c 0, the
contribution is from the motion in the straight section of
the trajectory. It can be easily shown that in this case,
Erad
s ¼ 0 and

ð���AsÞ¼e�

R

1��2cos�0

l=Rþc 0��2½1�ð1þxÞcos�0�; (26)

where �0 ¼ �þ c 0. l=R is the normalized distance be-
tween the retarded position of the particle and the entrance
of the magnet, which can be solved in the following
equation:

l=Rþ c 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð1þ xÞ sin�0 þ l=R�2 þ ½1� ð1þ xÞ cos�0�2p ¼ �:

(27)

For a beam with a finite longitudinal length L, each
particle enters the magnet at a different time. Therefore
the location of the boundary c ¼ c 0 in the ð�; xÞ plane
varies according to the initial longitudinal position of the
particle in the beam, causing a slightly different field near
this boundary for each particle. The �c 0 between the
first and last particle is L=R. An estimate of the width

FIG. 10. The on-axis longitudinal CSR field Es for the same
parameters in Fig. 9 and with � ¼ 100; 500, which corresponds
to scaled longitudinal beam spot size of 200, 25 000, respec-
tively. For � ¼ 500, the fields at x ¼ �2�x, i.e., ~x ¼ �100 are
also shown. The analytic result from 1D models [5,6] is plotted
for comparison.

FIG. 9. Top row: The longitudinal radiation field Erad
s (left) and the total longitudinal field Es (right) for a 2D Gaussian beam of

�x ¼ �s ¼ 200 �m, � ¼ 10, beam charge Q ¼ 1 nC and R ¼ 100 cm. Bottom row: Erad
s (left) and the total longitudinal field Es

(right) for the same parameters except for � ¼ 100. All fields are in units of MV=m.
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in � of the boundary region is ��¼2�1 �32=3c 2
0�c 0.

Furthermore, the potential from Eq. (26) is typically
much smaller than the potential from Eq. (25). Therefore,
when the boundary region width is sufficiently small com-
pared to the beam length in �, i.e. ��=ðL=RÞ � 1, one
can adopt Eqs. (23) and (25) for the transient CSR calcu-
lation. As the CSR field within the beam will reach steady

state when c 0 > c max
0 ¼ ð24L=RÞ1=3, for a transient cal-

culation, the ratio ��=ðL=RÞ< 2�1 � 32=3ðc max
0 Þ2 ¼

6 � 31=3ðL=RÞ2=3. For typical beam size, the condition
��=ðL=RÞ � 1 is well satisfied.

Figures 11 and 12 show the transient longitudinal CSR
fields when the beam has rotated 10
 in a bend for same
beam parameters used in Fig. 9. The transient fields are
substantially different than the 1D analytic result from
Eq. (88) in Ref. [6]. For example, although both the 1D
and 2D on-axis results approach the steady-state parabolic
cylinder function solution as s increases, the behavior
predicted by the transient term in the 1D model, which is
responsible for the peak around 
=�s ¼ 4 in Fig. 12, is
generally not seen in the 2D results.

C. Coordinate transform

In Sec. IV, we calculate the CSR field for a 2D beam
assuming a local Gaussian beam density profile in the
accelerator (Frenet-Serret) coordinates. However, in
beam dynamics simulations, we usually initialize the par-
ticle beam in Cartesian coordinates outside of the uniform
magnetic field region and then propagate the beam self-
consistently into this region. The edge of the magnetic field
region is assumed to be perpendicular to the beam’s en-
trance velocity and there is no initial velocity spread for the
beam particles. To benchmark such a simulation with the
numerical model in this paper, we can first avoid the effect
of the CSR field on the particle by using a low charge
beam. With this simulation setup, each beam particle will
bend in the magnetic field region with the same bending
radius but around different origins. This is illustrated in
Fig. 13. The density profile of the beam thus changes as it
propagates, which will lead to a deviation of the CSR field
from those calculated using the initial Gaussian profile. For
careful benchmarking between the simulation and the 2D
numerical model, this needs to be taken into account when
the bending angle is large. A more general study of the
coordinate transform is discussed in Ref. [13]; here we
focus on the transform for the specific simulation setup
illustrated in Fig. 13.
From Fig. 13, we can see that particles on a vertical

line initially remain on a vertical line at any instance during
the circular motion; therefore a particle at point A with
accelerator coordinates (
 � �R, x) can be mapped

back to its Cartesian coordinate (
0 � PA00_

, x0 � AA00)
before entering the magnetic bend using the following
relations:

! ¼ cos�1½ð1þ x=RÞ sinð�þ �Þ�; (28)


0 ¼ R

�
�

2
� ��!

	
; (29)

x0 ¼ ðRþ xÞ cosð�þ �Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðRþ xÞ2sin2ð�þ �Þ

q
:

(30)

FIG. 11. The transient longitudinal radiation field Erad
s (left) and the transient total longitudinal field Es (right) (in units of MV=m)

when beam has rotated 10
. The beam parameters are the same as in Fig. 9 and � ¼ 100.

FIG. 12. Comparison of the transient longitudinal CSR field Es

(blue dashed curve) and Erad
s (blue solid curve) with the 1D

analytic result from Eq. (88) of Ref. [6] for the same beam
parameters in Fig. 11. The 1D result applies to ultrarelativistic
beams. The off-axis field at x ¼ �2�x shows the transverse
variation of Erad

s in 2D.
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The Jacobian of this transform is

J ¼
@
0
@


@
0
@x

@x0
@


@x0
@x

2
4

3
5; (31)

where

@
0

@

¼ � cosð�þ �Þ; @
0

@x
¼ R

Rþ x
� sinð�þ �Þ;

@x0
@


¼ ðRþ xÞ sinð�þ �Þ
R

ð�� 1Þ;
@x0
@x

¼ cosð�þ �Þ þ �sin2ð�þ �Þ;

and � ¼ ½R2=ðRþ xÞ2 � sin2ð�þ �Þ��1=2. So the beam
density transforms as

�ð
; x;�Þ ¼ �0ð
0; x0; 0ÞjJj:

Figure 14 shows the coordinate transform ð
; xÞ !
ð
0; x0Þ of the particle for the parameters in Fig. 9 when
the beam has rotated � ¼ 10
 ¼ 0:175 rad. The dominant
effect introduced by the transform is a shear in 
0ð
; xÞ
shown in the top panel of Fig. 14. Figure 15 shows the
beam density in the Cartesian coordinate �ðZ; XÞ which is
mapped from the density in the accelerator coordinate
�ð
; x;�Þ by Z ¼ ðRþ xÞ sinð�þ 
=RÞ � R sin� and X ¼
ðRþ xÞ cosð�þ 
=RÞ � R cos� for better comparison
with simulation in the Cartesian geometry. The beam

FIG. 14. ð
; xÞ ! ð
0; x0Þ transform for the parameters in
Fig. 9, i.e., �x ¼ �s ¼ 200 �m, � ¼ 100, and R ¼ 100 cm,
when the beam has rotated � ¼ 10
 	 0:175 rad. The major
effect of the transform is seen in the plot of 
0ð
; xÞ where 
0 has
a x-dependent shift to 
.

FIG. 15. The beam density n=n0 and the total longitudinal
CSR field (in MV=m) in the Cartesian coordinates for a bending
angle of � ¼ 0:175 rad and the same parameters in Fig. 14. n0 is
the peak beam density before it enters the magnetic field region.

FIG. 13. Trajectories (solid curves) of three beam particles
which are initially at the center of the beam and separated
by equal distance vertically. Their trajectories are arcs with
the same curvature but shifted in the vertical direction
by the initial separation distance. Particles on a vertical line
remain on a vertical line as shown but their relative position to
the center of the beam P has changed. The center of the beam
has rotated by an angle � and a particle at point A nearby
can be described by the accelerator coordinates ð�; xÞ or
(
 � �R, x). Before entering the magnetic bend, the
Cartesian coordinates of this particle relative to the beam

center is (
0 � PA00_

, x0 � AA00). A0, A00 are the intersections

of P’s trajectory with OA and with AA00, respectively, where
AA00 is a vertical line.
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is tilted in the Cartesian geometry because of both
the coordinate transform defined in Eq. (30) and the
mapping into the Cartesian geometry. The former leads
to a tilt of the semiaxes of the Gaussian shape beam
with respect to the tangent of the beam trajectory at a
bending angle of � ¼ 10
 ¼ 0:175 rad (denoted by the
dashed line in Fig. 15), while the latter results in a
overall rotation of angle �. Compared to the result in
Fig. 9, the total longitudinal CSR field is also seen to
be tilted.

VI. SUMMARY

We have presented a simple model for CSR calcula-
tion for a beam with a predefined trajectory using the
Liénard-Wiechert formula. This model is an extension of
the well-known 1D line charge model to two spatial
dimensions in the bending plane. The use of a 2D model
is motivated by the need to benchmark PIC simulation
results and the demonstration in the Appendix that a line
charge model leads to diverging space charge potential
and fields for a coasting beam. In the 1D line charge
model, the longitudinal electric field from a single par-
ticle in the steady-state is independent of the angular
position of the particle and is only a function of the
relative angular position of the observation point. This
allows a convenient convolution procedure to replace the
summation process for the CSR calculation of a smooth
beam profile. In our model, we apply a similar convo-
lution algorithm in 2D by assuming the single particle
wakefield kernel is invariant if the source particle is
rotated around the origin or displaced slightly in the
radial direction by an amount comparable to the beam
size, which can be justified when the beam size is much
smaller than the bending radius. For the longitudinal
radiation field of a beam, Eq. (23) can be used. We
note that the diverging velocity field does not require
renormalization in the 2D model; therefore the total CSR
field including both the velocity field and the radiation
field can also be calculated from Eq. (23). Nonetheless
numerical convergence needs to be monitored and
imposes a severe limitation for the integration of a
kernel with such strong singularity. In this paper, the
convergence is significantly improved by using integra-
tion by parts, i.e., Eq. (25), however it may be further
improved by other analytic/numerical integration meth-
ods such as singularity subtraction/cancellation, coordi-
nate transform, and the integrated Green’s function
technique [14].

The properties of the single particle wakefield kernel
in the bending plane are investigated in detail. This
kernel is calculated using the exact Liénard-Wiechert
formula Eq. (14) for the longitudinal radiation field
and Eq. (17) for the wake potential. Approximation is
only made in the evaluation of the retarded angle for
which a new equation (10) sufficiently accurate for

the parameters of interest is derived from the exact
equation (2). The result from Eq. (10) is compared to
the exact solution in 2D and good agreement is found.
Simplified solutions from this equation are also given in
Eqs. (11)–(13) and compared to the commonly used
approximation Eqs. (4) and (7) in 1D models, revealing
the validity range of the 1D result. A universal equation
(21) for the retarded angle can be further derived from
Eq. (10). Using Eqs. (14) and (21), the major features of
the single particle longitudinal wakefield can be eluci-
dated. Similar to the 1D result, this kernel exhibits a far-
field pattern for angular distance � � ��3, a spiky near-
field pattern for � & ��3 which is the consequence of
the forward synchrotron radiation cone of the radiation
from a relativistic particle. In 2D, this near-field pattern
extends to a large distance independent of beam energy
in the outer radial direction but quickly drops off in the
inner direction, which is again the result from the syn-
chrotron radiation cone. This finding may have important
consequence when the beam is modulated or a material
boundary is present in the radial direction. With the help
of the universal equation, one can define scaled beam
sizes in the longitudinal and radial directions, i.e., ~�s ¼
�s�

3=R and ~�x ¼ �x�
2=R. Thus, the beam CSR field

can be calculated by a convolution of the scaled beam
density profile with the universal beam wakefield kernel.
The results from our model indicate that the well-known
parabolic cylinder functions is essentially the near-axis
far-field result when ~�s � 1 and ~�x= ~�s � 1. While for
beams with longitudinal size or modulation on the order
of R=�3, or with an aspect ratio ~�x=~�s approaching or
larger than unity, large deviation from the parabolic
cylinder result is expected.
Finally, our model should be considered as an extension

of the core algorithm of the 1D model to 2D. Therefore
transient effects and parallel-plate shielding can be in-
cluded in the same fashion as in 1D models. For example,
it is shown that the transient effect in 2D can be calculated
and it differs substantially from the 1D result due to the
spreading of radiation in 2D. Hence, the 2D model will be
useful for benchmarking the CSR field in a multidimen-
sional PIC simulation, for which self-consistent modeling
is possible. In a future work, we will explore parallel-plate
shielding through the method of image charge and possible
3D effects.
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APPENDIX: SPACE CHARGE FIELD
IN 1D AND 2D MODELS

Space charge field is the only field for a beam coast-
ing at a constant velocity. The calculation here can be
useful to illustrate the effectiveness of the numerical
methods to evaluate those fields with singularity at the
position of the source particle. We consider the space
charge field for a 2D Gaussian beam moving in the þx
direction. The beam lies in the x-y plane and is infini-
tesimally thin in the z direction, therefore its charge
distribution is only ‘‘2D’’. (We need to distinguish this
from the situation in a 2D PIC simulation where the
beam actually has infinite length in z. In fact, the proper
simulation to compare to is a 3D one with a beam of one
cell thick in z.) Such a 2D beam is more realistic than
the line charge distribution in a 1D model, but its field is
less difficult to solve than a 3D distribution. We will
show that the line charge model leads to diverging fields
and potentials in the space charge field.

In the beam’s rest frame, the electrostatic potential �
can be calculated using the Green’s function of the
Poisson’s equation,

�ðx; y; zÞ ¼
ZZZ þ1

�1
�ðx0; y0; z0Þdx0dy0dz0

½ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2�1=2 :
(A1)

The integrand in this integral is singular for a position
inside the beam where the density is nonzero. However,
by using a numerical technique which expresses

1=½ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2�1=2 ¼ 1=R as the in-
tegral of a Gaussian function, i.e.,

1

R
¼ 1

jRj ¼
ffiffiffiffi
2

�

s Z 1

0
e��2R2=2d�;

the Kheifets-Bassetti-Erskine [15] formula for a Gaussian

beam �ðx; y; zÞ ¼ Q

ð2�Þ3=2�x�y�z
e�ðx2=2�2

xÞe�ðy2=2�2
yÞe�ðz2=2�2

z Þ

can be derived:

�ðx; y; zÞ ¼
ffiffiffiffi
2

�

s
Q

�x�y�z

Z 1

0

e�½x2�2=2ð�2�2
xþ1Þ��½y2�2=2ð�2�2

yþ1Þ��½z2�2=2ð�2�2
zþ1Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2 þ ��2
x Þð�2 þ ��2

y Þð�2 þ ��2
z Þ

q d�: (A2)

Taking the limit �z ! 0, the potential of a 2D beam �ðx; y; zÞ ¼ Q
2��x�y

e�ðx2=2�2
xÞe�ðy2=2�2

yÞ�ðzÞ is

�ðx; y; zÞ ¼
ffiffiffiffi
2

�

s
Q

�x�y

Z 1

0

e�½x2�2=2ð�2�2
xþ1Þ��½y2�2=2ð�2�2

yþ1Þ��ðz2�2=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 þ ��2

x Þð�2 þ ��2
y Þ

q d�: (A3)

Then the potential in the lab frame can be obtained after
a Lorentz transformation. Since the Lorentz transformation
does not introduce singularity in the calculation, one only
needs to check the convergence of the result in the rest
frame. The integral in Eq. (A3) does not involve a singular
integrand and can be performed to verify that the result is
finite in a 2D model. For the potential in the 2D plane at
z ¼ 0, the integral in Eq. (A3) can be rewritten by variable
change ��x ! � as

�ðx; y; z ¼ 0Þ ¼
ffiffiffiffi
2

�

s
Q

�y

Z 1

0
G2ð�Þd�; (A4)

where

G2ð�Þ ¼ e�½ðx=�xÞ2�2=2ð�2þ1Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p e�½ðy=�xÞ2�2=2ð�2�2
y�

�2
x þ1Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2
x�

�2
y

q :

Defining

G3ð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 þ 1Þð�2 þ �2

x�
�2
y Þ

q ;

it is straightforward to show that G2 has lower and upper
bounds,

e�ð1=2Þ½ðx=�xÞ2þðy=�yÞ2�G3ð�Þ � G2ð�Þ � G3ð�Þ: (A5)

If we integrate Eq. (A5) over �, we will obtain the
lower bound and the upper bound of � too. It turns
out that

Z 1

0
G3ð�Þd� ¼ �y

�x

K

�
1� �2

y

�2
x

	
;

where K is the complete elliptic integral of the first kind,
therefore

e�ð1=2Þ½ðx=�xÞ2þðy=�yÞ2�Hð�x; �yÞ �
ffiffiffiffi
�

2

r
1

Q
� � Hð�x;�yÞ;

where both the lower and the upper bound is proportional
to Hð�x; �yÞ ¼ Kð1� �2

y=�
2
xÞ=�x, which is finite for

finite �x and �y. However, when �y ¼ 0, i.e., in the

line charge case, Hð�x; 0Þ ¼ 1, so �ðx; y ¼ 0Þ ! 1.
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A similar conclusion can be drawn for �ðx ¼ 0; yÞ
if we swap �x and �y in the above calculation and let

�x ¼ 0. One can also directly verify the potential in 1D
line charge model diverges by bounding the following
integral:

�ðx; y ¼ 0; z ¼ 0Þ ¼
ffiffiffiffi
2

�

s
Q

�x

Z 1

0

e�½ðx=�xÞ2�2=2ð�2þ1Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p d�

¼
ffiffiffiffi
2

�

s
Q

�x

Z 1

0
G1ð�Þd�; (A6)

e�ðx=�xÞ2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p � G1ð�Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p : (A7)

The lower and upper bounds of � are both proportional

to
R1
0 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
d� ¼ sinh�1ð�Þj10 ¼ 1; therefore the

result is infinite.
One can also show the electric fields for a Gaussian

beam are infinite in the 1D line charge model and finite
in the 2D model by taking the derivative of Eq. (A4).
Although we only show the convergence of the result in
the same plane of the 2D beam above, the convergence for
the fields off the plane can be calculated in a similar
manner. Therefore, the space charge field calculation can
be included in a 2D model for CSR as long as the numeric
calculation converges.
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